In non-Hermitian systems, controlling the gain or loss of the system can enable the system state transition from PT-symmetry to broken PT-symmetry. This transition leads to a special point known as the exceptional point, where the system eigenvalues and eigenstates become simultaneously degenerate. When combined with metasurfaces, the exceptional point leads to various intriguing optical phenomena, such as asymmetric transmission, exceptional topological phase, and the non-Hermitian skinning effect. However, active metasurfaces introducing gains are difficult to realize experimentally. Therefore, designing passive metasurfaces using equivalent gains through loss becomes a powerful tool in non-Hermitian research. In this paper, we review the theoretical models, research progress, specific applications, and experimental design in the study of the exceptional point on passive non-Hermitian metasurfaces and look forward to the future direction of this field.
This paper presents various aspects of atmospheric refraction to gain insight into the advances in this field. It divides the effects of atmospheric refraction into two categories: the visible-to-infrared bands used in research fields such as optical imaging, laser transmission, and optoelectronic tracking and the radio band used in radar measurements and satellite detection. The calculation formulas for these two bands are different in their practical treatment. This paper introduces the refractive index formulas according to the refractive index formula's development history and points out the limitations of each formula. The current best choice for the former formula is the one summarized by Rüeger scholars; for the latter, it is recommended to choose the radio refractive index formula in the Rec. ITU-R P.453-14. In addition, the relationship between the refractive index of the Earth's surface and altitude, reference data for the refractive index on a global scale, and statistical distributions for the calculation of the refractive index gradient are given in the recommendation. Finally, traditional calculation methods for obtaining atmospheric refraction and optical observation methods are presented. The former study is based on the modeling of atmospheric patterns or meteorological data, formulae for refractive indices in specific regions, or model fitting to satisfy accuracy in a single environment or on an average scale. The optical measurement method does not need an atmospheric model as a basis, nor does it rely on meteorological parameters. The measurement results of the data are real-time and more representative of the path. It can make up for some of shortcomings of the traditional methods, and is more in line with future development trend of the future.
Optical Systems using aspheric components (especially for free-form ones) have remarkable advantages over traditional spherical systems in that they can satisfy complicated requirements with simple optical-mechanical structures relying on abundant optional design parameters. Surface testing is an essential process for ensuring accuracy in manufacturing. Therefore, plenty of testing methods have been developed to meet varying testing demands of different types of surfaces at different stages in manufacturing. This paper summarizes the history of aspheric surface testing technology, classifies available techniques by whether they use interferometry, then introduces corresponding technical indexes, applicable conditions, research progress and applications. This paper highlights the high-precision interferometric methods, basic principles, optical layout and testing performances of every measurement method classified into Null and Non-null testing. The pros and cons of each method are compared, relative algorithms are introduced and precise adjustment methods are discussed.